Hubs, switches, bridges e roteadores

O hub ou switch é simplesmente o coração da rede. Ele serve como um ponto central, permitindo que todos os pontos se comuniquem entre si. Todas as placas de rede são ligadas ao hub ou switch e é possível ligar vários hubs ou switches entre si (até um máximo de 7), caso necessário.

A diferença entre os hubs e switches é que o hub apenas retransmite tudo o que recebe para todos os micros conectados a ele, como se fosse um espelho. Isso significa que apenas um micro pode transmitir dados de cada vez e que todas as placas precisam operar na mesma velocidade, que é sempre nivelada por baixo. Caso você coloque um micro com uma placa de 10 megabits na rede, a rede toda passará a trabalhar a 10 megabits.

Os switches por sua vez são aparelhos muito mais inteligentes. Eles fecham canais exclusivos de comunicação entre o micro que está enviando dados e o que está recebendo, permitindo que vários pares de micros troquem dados entre si ao mesmo tempo. Isso melhora bastante a velocidade em redes congestionadas, com muitos micros. Outra vantagem dos switches é que eles permitem o uso do modo full-duplex, onde é possível enviar e receber dados simultaneamente. Isso permite que os micros disponham de 100 ou 1000 megabits em cada sentido, agilizando as transmissões.

Hoje em dia, os hubs “burros” caíram em desuso. Quase todos à venda atualmente são “hub-switches“, modelos de switches mais baratos, que custam quase o mesmo que um hub antigo. Depois destes, temos os switches “de verdade”, capazes de gerenciar um número muito maior de portas, sendo por isso adequados a redes de maior porte.

Um switch pode operar de quatro formas. No sistema cut-through o switch inicia a retransmissão dos frames imediatamente após receber os headers (que contém os endereços de origem e de destino). Nesse modo o switch não faz nenhum tipo de verificação no frame, simplesmente o retransmite da forma como os dados foram recebidos. No modo store-and-forward o switch armazena o pacote na memória, realiza algumas verificações básicas e só então envia o pacote ao destinatário, descartando pacotes inválidos e solicitando a retransmissão de pacotes corrompidos.

A vantagem do modo cut-through é a baixa latência, já que o switch executa muito pouco processamento e vai retransmitindo os dados do pacote conforme eles são recebidos. Entretanto, além da questão da estabilidade e melhor uso da banda da rede, o modo store-and-forward oferece uma vantagem importante, que é o fato de permitir que as portas do switch trabalhem a diferentes velocidades, sem precisar reduzir a taxa de transmissão da porta mais rápida, limitando-a à da porta mais lenta.

Uma terceira tecnologia é a adaptative cut-through, disponível em modelos mais recentes. Nesse modo, o switch opera inicialmente em modo cut-through (para minimizar a latência), mas passa automaticamente a operar em modo store-and-forward caso detecte um grande volume de frames inválidos ou corrompidos, ou caso precise transmitir frames entre duas portas operando a diferentes velocidades (100 e 1000, por exemplo). No caso dos switches adaptative cut-through gerenciáveis, é possível também forçar um dos dois modos de operação.

Hoje em dia, o modo de operação do switch é mais uma opção de design do que uma diferença prática, pois em redes de 100 e 1000 megabits o tempo de latência é sempre muito baixo, independentemente do modo de operação. A maioria dos switches gigabit atuais operam com tempos de latência inferiores a 20 microsegundos (0.02 ms), o que é uma necessidade, já que um switch lento não conseguiria encaminhar 1 gigabit de dados por segundo em primeiro lugar.

O quarto modo de operação, pouco relevante hoje em dia, é o fragment-free, onde o switch aguarda o recebimento dos primeiros 64 bytes do frame, certifica-se de que não ocorreu uma colisão e só então o retransmite. Este modo foi desenvolvido para minimizar a ocorrência de colisões, mas se tornou irrelevante com a popularização do modo full-duplex, onde é negociado um canal exclusivo de transmissão entre cada estação e o switch, eliminando o problema.

Voltando ao tema inicial, tanto os “hub-switches”, quanto os switches “de verdade” são dispositivos que trabalham no nível 2 do modelo OSI. O que muda entre as duas categorias é o número de portas e recursos. Os switches “de verdade” possuem interfaces de gerenciamento, que você acessa através do navegador em um dos micros da rede, que permitem visualizar diversos detalhes sobre o tráfego, descobrir problemas na rede e alterar diversas configurações, enquanto que os “hub-switches” são dispositivos burros.

Hoje em dia, existem ainda os “level 3 switches”, uma categoria ainda mais inteligente de switches, que incorporam algumas características dos roteadores. Eles permitem definir rotas entre os diferentes micros da rede com base no endereço MAC ou endereço IP, criar redes virtuais (VLANs) e assim por diante.

O uso de VLANs permite dividir as portas do switch em dois ou mais switches lógicos, que realmente funcionam como se fossem aparelhos separados, dando uma grande flexibilidade ao definir a topologia da rede.


Configuração de VLANs na interface de gerenciamento de um Netgear GS716T

Os switches com interfaces de gerenciamento são genericamente chamados de “manageable switchs” (switches gerenciáveis) ou “fully managed switchs”, enquanto os switches mais simples são chamados de “unmanaged switchs” (switches não-gerenciáveis).

Um exemplo de switch gerenciável de baixo custo é o Linksys SRW2008 que custa (no exterior) pouco mais de US$ 200. Nele, a interface de gerenciamento é acessível usando o navegador. Inicialmente o switch fica disponível através do endereço “192.168.1.254” (você precisa configurar seu PC para um endereço dentro da mesma faixa para acessá-lo), mas o endereço pode ser alterado após o primeiro acesso. É possível também acessar a configuração do switch usando um cabo serial e um cliente de terminal, como o Hyper Terminal (no Windows) ou o Minicom (no Linux).


Linksys SRW2008

Existe ainda uma categoria de switches intermediários, chamados de “smart switchs”. Eles são switches gerenciáveis de baixo custo, destinados a redes domésticas, que oferecem apenas um pequeno conjunto das opções disponíveis nos modelos fully managed, mas em troca custam menos. Duas características básicas disponíveis nos smart switches são a possibilidade de criar redes virtuais e ativar o uso do QoS.

O QoS permite priorizar o tráfego de determinados tipos de dados (streaming de vídeo, por exemplo) ou o tráfego de determinadas portas (a porta onde o servidor está conectado, por exemplo), evitando interrupções no fluxo de dados nos momentos de atividade intensa da rede.

Temos também os “stackable switchs” (switches empilháveis) que podem ser combinados para formar switches maiores. Eles normalmente são produzidos no formato 1U, de forma a serem instalados em racks para servidores:


Netgear FSM7328S, um exemplo de stackable switch

Se o objetivo fosse simplesmente obter mais portas, você poderia muito bem ligar vários switches baratos utilizando cabos de rede. Ligando três switches de 8 portas, você obteria um switch de 20 portas (4 das portas são sacrificadas para fazer a ligação) e assim por diante:


Ligação de três hub-switches em modo daisy chain

Antigamente, a ligação era feita usando cabos cross-over, ou utilizando a porta “uplink” do hub, mas nos hub-switches atuais você pode utilizar qualquer uma das portas e utilizar tanto cabos straight quanto cabos cross-over, pois o switch é capaz de detectar o tipo de cabo usado.

Esta configuração é apelidada de “daisy chain” e permite que você interconecte até 5 níveis de hubs ou de switches (o primeiro é ligado ao segundo, o segundo ao terceiro, o terceiro ao quarto e o quarto ao quinto) este limite existe porque as estações ligadas a um sexto switch excederiam o limite de repetições ao se comunicarem com as estações ligadas ao primeiro.

É possível interligar mais do que 5 switches, desde que você ligue-os a um switch central. Você poderia ter, por exemplo, 8 switches de 8 portas ligados às 8 portas do switch central, totalizando 56 portas disponíveis. O switch central passa então a ser chamado de “backbone switch”, já que passa a ser a espinha dorsal da rede.

O problema é que nesse caso a comunicação entre os switches é feita na velocidade da rede, ou seja, a 100 ou 1000 megabits, o que cria um grande gargalo em situações onde vários micros (ligados a diferentes switches) precisem transmitir dados simultaneamente.

A principal vantagem dos stackable switches é que eles possuem barramentos de comunicação dedicados (chamados de “stacking bus”) para a comunicação entre os switches, que oferecem velocidades de transmissão muito mais elevadas, eliminando o gargalo:


Portas do stacking bus utilizado para interligar os switches. Neste modelo da Netgear, até 6 switches podem ser interligados. Além de serem ligados um ao outro, o último é ligado ao primeiro, de forma a manter a comunicação caso um dos 6 falhe ou seja desligado.

Para cortar custos nos modelos mais baratos, é comum que o barramento dedicado seja substituído por uma ou mais portas do padrão Ethernet seguinte, que podem ser usadas para fazer a interligação entre os switches. Um switch com portas de 100 megabits pode incluir então uma porta uplink de 1000 megabits, por exemplo.

Além disso, eles permitem a conexão de um número maior de switches (atendendo a situações onde você precisa de um número muito grande de portas, como no caso de datacenters), além de opções de gerenciamento e recursos extras, como a presença de algumas portas para cabos de fibra óptica, que podem ser utilizados para criar backbones de longa distância interligando os switches.

O Netgear FSM7328S da foto anterior, por exemplo, possui 24 portas de 100 megabits e 4 portas gigabit, que suportam o uso de cabos de par trançado ou de fibra óptica. O switch trabalha utilizando o modo store and forward, de forma que as conexões envolvendo portas de velocidades diferentes não são niveladas por baixo. Um servidor ligado a uma das portas gigabit poderia (na ausência de outros gargalos, como a taxa de transferência do HD ou overhead do protocolo) atender 10 clientes ligados às portas de 100 megabits, enviando 100 megabits de dados para cada um, simultaneamente.

Temos também os bridges (pontes), que permitem interligar dois segmentos de rede, de forma que eles passem a formar uma única rede. Em redes antigas, onde era utilizado um único cabo coaxial ou um hub burro, o uso de bridges permitia dividir a rede em segmentos menores, reduzindo, assim, o volume de colisões e melhorando o desempenho da rede. O bridge trabalha no nível 2 do modelo OSI, verificando os endereços MAC de origem e de destino dos frames e encaminhando apenas os frames necessários de um segmento a outro. Outra vantagem é que a rede passa a comportar duas transmissões simultâneas, uma envolvendo micros do segmento A e outra envolvendo micros do segmento B:

Hoje em dia não faz sentido usar bridges para dividir a rede em segmentos porque os switches já desempenham essa função, criando segmentos individuais para cada micro, o que praticamente elimina o problema das colisões, mas eles foram muito utilizados na época dos hubs burros.

Outra utilidade dos bridges é unificar segmentos de rede baseados em mídias diferentes. Antigamente, quando ainda estava acontecendo a transição das redes com cabos coaxiais para as redes de par trançado, era muito comum que fosse utilizado um bridge para interligar os hosts conectados à rede antiga, com cabo coaxial à rede nova, com cabos de par trançado. Graças ao trabalho do bridge, tudo funcionava de forma transparente.

O bridge não precisa necessariamente ser um dispositivo dedicado. Veja o caso deste hub antigo, que além das 8 portas para cabos de par trançado, possui também um conector de cabo coaxial, o que permite que ele assuma também a função de bridge, interligando os dois segmentos de rede:


Hub 10/10 antigo, com saída para cabo coaxial

Atualmente, o exemplo mais comum de bridge são os pontos de acesso wireless, que podem interligar os micros da rede cabeada aos micros conectados à rede wireless, criando uma única rede. Muitos pontos de acesso incorporam também switches de 4 ou mais portas, ou até mesmo miniroteadores, que permitem compartilhar a conexão entre os micros da rede local. Hoje em dia, dispositivos “tudo em um” são cada vez mais comuns, pois com o avanço das técnicas de fabricação, tornou-se possível incluir cada vez mais circuitos em um único chip, fazendo com que um ponto de acesso “tudo em um” custe praticamente o mesmo que um ponto de acesso sem as funções extras.

Finalmente, temos os roteadores, que são o topo da cadeia evolutiva. Os roteadores são ainda mais inteligentes, pois são capazes de interligar várias redes diferentes e sempre escolher a rota mais rápida para cada pacote de dados. Os roteadores operam no nível 3 do modelo OSI, procurando por endereços IP em vez de endereços MAC.

Usando roteadores, é possível interligar um número enorme de redes diferentes, mesmo que situadas em países ou mesmo continentes diferentes. Note que cada rede possui seu próprio roteador e os vários roteadores são interligados entre si. É possível interligar inúmeras redes diferentes usando roteadores, e não seria de se esperar que todos os roteadores tivessem acesso direto a todos os outros roteadores a que estivesse conectado.

Pode ser que, por exemplo, o roteador 4 esteja ligado apenas ao roteador 1, que esteja ligado ao roteador 2, que por sua vez esteja ligado ao roteador 3, que esteja ligado aos roteadores 5 e 6. Se um micro da rede 1 precisar enviar dados para um dos micros da rede 6, então o pacote passará primeiro pelo roteador 2, será encaminhado ao roteador 3 e finalmente ao roteador 6. Cada vez que o dado é transmitido de um roteador para outro, temos um “hop”.

Os roteadores são inteligentes o suficiente para determinar o melhor caminho a seguir. Inicialmente, o roteador procurará o caminho com o menor número de hops: o caminho mais curto. Mas se por acaso perceber que um dos roteadores desta rota está ocupado demais (o que pode ser medido pelo tempo de resposta), ele procurará caminhos alternativos para desviar do trecho de lentidão, mesmo que para isso o sinal tenha que passar por mais roteadores. No final, apesar do sinal ter percorrido o caminho mais longo, chegará mais rápido, pois não precisará ficar esperando na fila do roteador congestionado.

A Internet é, na verdade, uma rede gigantesca, formada por várias sub-redes interligadas por roteadores. Todos os usuários de um pequeno provedor, por exemplo, podem ser conectados à Internet por meio do mesmo roteador. Para baixar uma página do Google, por exemplo, o sinal deverá passar por vários roteadores, várias dezenas em alguns casos. Se todos estiverem livres, a página será carregada rapidamente. Porém, se alguns estiverem congestionados, pode ser que a página demore vários segundos antes de começar a carregar.

Você pode medir o tempo que um pedido de conexão demora para ir até o destino e ser respondido usando o ping. Para verificar por quantos roteadores o pacote está passando até chegar ao destino, use o comando “traceroute” (no Linux) ou “tracert” (no Windows).

Os roteadores podem ser desde PCs comuns, com duas ou mais placas de rede, até supercomputadores capazes de gerenciar centenas de links de alta velocidade. Muda o desempenho e muda o sistema operacional usado, mas o trabalho é fundamentalmente o mesmo.


Roteador Cisco com diversos links de fibra óptica

Quando você usa um PC com duas placas de rede para compartilhar a conexão com os micros da rede local, você está configurando-o para funcionar como um roteador simples, que liga uma rede (a Internet) a outra (a sua rede doméstica). O mesmo acontece ao configurar seu modem ADSL como roteador. Pense que a diferença entre os switches e os roteadores é justamente esta: os switches permitem que vários micros sejam ligados formando uma única rede, enquanto que os roteadores permitem interligar várias redes diferentes, criando redes ainda maiores, como a própria Internet.

Dentro de uma mesma rede é possível enviar pacotes de broadcast, que são endereçados a todos os integrantes da rede simultaneamente e, ao usar um hub burro, todos os micros recebem todas as transmissões. Um roteador filtra tudo isso, fazendo com que apenas os pacotes especificamente endereçados a endereços de outras redes trafeguem entre elas. Lembre-se de que, ao contrário das redes locais, os links de Internet são muito caros, por isso é essencial que sejam bem aproveitados.

Sobre o Autor

Redes Sociais:

Deixe seu comentário

X